Fourier transforms of measures on the Brownian graph

Jonathan M. Fraser
The University of Manchester

Joint work with Tuomas Sahlsten (Bristol, UK) and Tuomas Orponen (Helsinki, Finland)

ICERM
10th March 2016

My co-authors

Fourier transforms and dimension

The Fourier transform of a measure μ on \mathbb{R}^{d} is a function $\hat{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{C}$ defined by

$$
\hat{\mu}(x)=\int \exp (-2 \pi i x \cdot y) d \mu(y)
$$

Fourier transforms and dimension

The Fourier transform gives much geometric information about the measure.

Fourier transforms and dimension

The Fourier transform gives much geometric information about the measure.

$$
\operatorname{dim}_{\mathrm{H}} K=\sup \left\{s \geqslant 0: \exists \mu \text { on } K \text { such that } I_{s}(\mu)<\infty\right\}
$$

where

$$
I_{s}(\mu)=\iint \frac{d \mu(x) d \mu(y)}{|x-y|^{s}}
$$

Fourier transforms and dimension

The Fourier transform gives much geometric information about the measure.

$$
\operatorname{dim}_{H} K=\sup \left\{s \geqslant 0: \exists \mu \text { on } K \text { such that } I_{s}(\mu)<\infty\right\}
$$

where

$$
I_{s}(\mu)=\iint \frac{d \mu(x) d \mu(y)}{|x-y|^{s}}
$$

or (using Parseval and convolution formulae)

$$
I_{s}(\mu)=C(s, d) \int_{\mathbb{R}^{d}}|\hat{\mu}(x)|^{2}|x|^{s-d} d x \quad(0<s<d)
$$

Fourier transforms and dimension

The Fourier transform gives much geometric information about the measure.

$$
\operatorname{dim}_{H} K=\sup \left\{s \geqslant 0: \exists \mu \text { on } K \text { such that } I_{s}(\mu)<\infty\right\}
$$

where

$$
I_{s}(\mu)=\iint \frac{d \mu(x) d \mu(y)}{|x-y|^{s}}
$$

or (using Parseval and convolution formulae)

$$
I_{s}(\mu)=C(s, d) \int_{\mathbb{R}^{d}}|\hat{\mu}(x)|^{2}|x|^{s-d} d x \quad(0<s<d)
$$

\ldots and so if μ is supported on K, then

$$
|\hat{\mu}(x)| \lesssim|x|^{-s / 2}
$$

Fourier transforms and dimension

The Fourier transform gives much geometric information about the measure.

$$
\operatorname{dim}_{H} K=\sup \left\{s \geqslant 0: \exists \mu \text { on } K \text { such that } I_{s}(\mu)<\infty\right\}
$$

where

$$
I_{s}(\mu)=\iint \frac{d \mu(x) d \mu(y)}{|x-y|^{s}}
$$

or (using Parseval and convolution formulae)

$$
I_{s}(\mu)=C(s, d) \int_{\mathbb{R}^{d}}|\hat{\mu}(x)|^{2}|x|^{s-d} d x \quad(0<s<d)
$$

\ldots and so if μ is supported on K, then

$$
|\hat{\mu}(x)| \lesssim|x|^{-s / 2} \Rightarrow I_{s-}(\mu)<\infty
$$

Fourier transforms and dimension

The Fourier transform gives much geometric information about the measure.

$$
\operatorname{dim}_{H} K=\sup \left\{s \geqslant 0: \exists \mu \text { on } K \text { such that } I_{s}(\mu)<\infty\right\}
$$

where

$$
I_{s}(\mu)=\iint \frac{d \mu(x) d \mu(y)}{|x-y|^{s}}
$$

or (using Parseval and convolution formulae)

$$
I_{s}(\mu)=C(s, d) \int_{\mathbb{R}^{d}}|\hat{\mu}(x)|^{2}|x|^{s-d} d x \quad(0<s<d)
$$

\ldots and so if μ is supported on K, then

$$
|\hat{\mu}(x)| \lesssim|x|^{-s / 2} \Rightarrow I_{s-}(\mu)<\infty \Rightarrow \operatorname{dim}_{\mathrm{H}} K \geqslant s
$$

Simple example

For example, if μ is Lebesgue measure on the unit interval, then a quick calculation reveals that for $x \in \mathbb{R}$

$$
|\hat{\mu}(x)|=\left|\int_{0}^{1} \exp (-2 \pi i x y) d y\right| \leqslant \frac{1}{\pi}|x|^{-1}
$$

Examples with no decay

Examples with no decay

The middle 3rd Cantor set also supports no measures with Fourier decay!

Fourier dimension

How much dimension can be realised by Fourier decay?

Fourier dimension

How much dimension can be realised by Fourier decay?

$$
\operatorname{dim}_{\mathrm{F}} K=\sup \left\{s \geqslant 0: \exists \mu \text { on } K \text { such that }|\hat{\mu}(x)| \lesssim|x|^{-s / 2}\right\}
$$

Fourier dimension

How much dimension can be realised by Fourier decay?

$$
\begin{gathered}
\operatorname{dim}_{\mathrm{F}} K=\sup \left\{s \geqslant 0: \exists \mu \text { on } K \text { such that }|\hat{\mu}(x)| \lesssim|x|^{-s / 2}\right\} \\
\operatorname{dim}_{\mathrm{F}} K \leqslant \operatorname{dim}_{\mathrm{H}} K
\end{gathered}
$$

Sets with equality are called Salem sets.

Classical results on Brownian motion

Classical results on Brownian motion

The image of a Cantor set $K \subseteq \mathbb{R}$ under Brownian motion is a random fractal:

$$
B(K)=\{B(x): x \in K\} .
$$

Classical results on Brownian motion

The image of a Cantor set $K \subseteq \mathbb{R}$ under Brownian motion is a random fractal:

$$
B(K)=\{B(x): x \in K\} .
$$

- McKean proved in 1955 that 'Brownian motion doubles dimension', i.e.

$$
\operatorname{dim}_{H} B(K) \stackrel{\text { a.s. }}{=} \min \left\{2 \operatorname{dim}_{H} K, 1\right\} .
$$

Classical results on Brownian motion

The image of a Cantor set $K \subseteq \mathbb{R}$ under Brownian motion is a random fractal:

$$
B(K)=\{B(x): x \in K\} .
$$

- McKean proved in 1955 that 'Brownian motion doubles dimension', i.e.

$$
\operatorname{dim}_{H} B(K) \stackrel{\text { a.s. }}{=} \min \left\{2 \operatorname{dim}_{H} K, 1\right\} .
$$

- Kahane proved in 1966 that such image sets are almost surely Salem.

Classical results on Brownian motion

The level sets of Brownian motion are random fractals:

$$
L_{y}(B)=B^{-1}(y)=\{x \in \mathbb{R}: B(x)=y\}
$$

Classical results on Brownian motion

The level sets of Brownian motion are random fractals:

$$
L_{y}(B)=B^{-1}(y)=\{x \in \mathbb{R}: B(x)=y\}
$$

- Taylor/Perkins proved in 1955/1981 that

$$
\operatorname{dim}_{H} L_{y}(B) \stackrel{\text { d.s. }}{=} 1 / 2
$$

Classical results on Brownian motion

The level sets of Brownian motion are random fractals:

$$
L_{y}(B)=B^{-1}(y)=\{x \in \mathbb{R}: B(x)=y\}
$$

- Taylor/Perkins proved in 1955/1981 that

$$
\operatorname{dim}_{H} L_{y}(B) \stackrel{\text { a.s. }}{=} 1 / 2
$$

- Kahane proved in 1983 that such level sets are almost surely* Salem.

Classical results on Brownian motion

The graph of Brownian motion is a random fractal:

$$
G(B)=\{(x, B(x)): x \in \mathbb{R}\} .
$$

Classical results on Brownian motion

The graph of Brownian motion is a random fractal:

$$
G(B)=\{(x, B(x)): x \in \mathbb{R}\} .
$$

- Taylor proved in 1953 that

$$
\operatorname{dim}_{H} G(B) \stackrel{\text { a.s. }}{=} 3 / 2 .
$$

Classical results on Brownian motion

The graph of Brownian motion is a random fractal:

$$
G(B)=\{(x, B(x)): x \in \mathbb{R}\} .
$$

- Taylor proved in 1953 that

$$
\operatorname{dim}_{H} G(B) \stackrel{\text { a.s. }}{=} 3 / 2
$$

- It remained open for a long time whether or not graphs are almost surely Salem.
- Kahane explicitly asked the question in 1993 (also asked by Shieh-Xiao in 2006).

Our work on Brownian motion

Theorem (F-Orponen-Sahlsten, IMRN '14)

The graph of Brownian motion is almost surely not a Salem set.

Our work on Brownian motion

Theorem (F-Orponen-Sahlsten, IMRN '14)

The graph of Brownian motion is almost surely not a Salem set. In fact, there does not exist a measure μ supported on a graph which satsfies:

$$
|\hat{\mu}(x)| \lesssim|x|^{-s / 2}
$$

for any $s>1$. Therefore $\operatorname{dim}_{F} G(B) \leqslant 1<3 / 2 \stackrel{\text { a.s. }}{=} \operatorname{dim}_{H} G(B)$.

Our work on Brownian motion

Theorem (F-Orponen-Sahlsten, IMRN '14)

The graph of Brownian motion is almost surely not a Salem set. In fact, there does not exist a measure μ supported on a graph which satsfies:

$$
|\hat{\mu}(x)| \lesssim|x|^{-s / 2}
$$

for any $s>1$. Therefore $\operatorname{dim}_{F} G(B) \leqslant 1<3 / 2 \stackrel{\text { a.s. }}{=} \operatorname{dim}_{H} G(B)$.

- Key idea: we proved a new slicing theorem for planar sets supporting measures with fast Fourier decay.
- the answer to Kahane's problem is geometric (not stochastic).

Slicing theorems

Theorem (Marstrand)

Suppose $K \subset \mathbb{R}^{2}$ has $\operatorname{dim}_{H} K>1$, then for almost all directions $\theta \in S^{1}$, Lebesgue positively many $y \in \mathbb{R}$ satisfy:

$$
\operatorname{dim}_{H} K \cap L_{\theta, y}>0 .
$$

Slicing theorems

Theorem (Marstrand)

Suppose $K \subset \mathbb{R}^{2}$ has $\operatorname{dim}_{H} K>1$, then for almost all directions $\theta \in S^{1}$, Lebesgue positively many $y \in \mathbb{R}$ satisfy:

$$
\operatorname{dim}_{H} K \cap L_{\theta, y}>0 .
$$

Theorem (F-Orponen-Sahlsten, IMRN '14)

Suppose $K \subset \mathbb{R}^{2}$ has $\operatorname{dim}_{F} K>1$, then for all directions $\theta \in S^{1}$, Lebesgue positively many $y \in \mathbb{R}$ satisfy:

$$
\operatorname{dim}_{H} K \cap L_{\theta, y}>0 .
$$

Our work on Brownian motion

- Brownian graphs are not Salem, but what is their Fourier dimension?

Our work on Brownian motion

- Brownian graphs are not Salem, but what is their Fourier dimension?

Theorem (F-Sahlsten, 2015)

Let μ be the push forward of Lebesgue measure on the graph of Brownian motion. Then almost surely

$$
|\hat{\mu}(x)| \lesssim|x|^{-1 / 2} \sqrt{\log |x|} \quad\left(x \in \mathbb{R}^{2}\right)
$$

and, in particular, $\operatorname{dim}_{F} G(B) \stackrel{\text { a.s. }}{=} 1$.

Our work on Brownian motion

- Brownian graphs are not Salem, but what is their Fourier dimension?

Theorem (F-Sahlsten, 2015)

Let μ be the push forward of Lebesgue measure on the graph of Brownian motion. Then almost surely

$$
|\hat{\mu}(x)| \lesssim|x|^{-1 / 2} \sqrt{\log |x|} \quad\left(x \in \mathbb{R}^{2}\right)
$$

and, in particular, $\operatorname{dim}_{\mathrm{F}} G(B) \stackrel{\text { a.s. }}{=} 1$.

This time our proof was stochastic (not geometric) and relied on techniques from Itô calculus, as well as adapting some of Kahane's ideas.

Sketch proof

Write $x \in \mathbb{R}^{2}$ in polar coordinates as

$$
x=(u \cos \theta, u \sin \theta)
$$

and observe that

$$
\hat{\mu}(x)=\int_{0}^{1} \overbrace{\exp (-2 \pi i u(t \cos \theta+B(t) \sin \theta))}^{Z_{t}} d t .
$$

Sketch proof

Write $x \in \mathbb{R}^{2}$ in polar coordinates as

$$
x=(u \cos \theta, u \sin \theta)
$$

and observe that

$$
\hat{\mu}(x)=\int_{0}^{1} \overbrace{\exp (-2 \pi i u(t \cos \theta+B(t) \sin \theta))}^{z_{t}} d t
$$

We must prove

$$
|\hat{\mu}(x)| \stackrel{\text { a.s. }}{\leqslant} C u^{-1 / 2} \sqrt{\log u}
$$

with C independent of θ.

Sketch proof - case 1: θ close to 0

Suppose $0<\theta<u^{-1 / 2}$.

Sketch proof - case 1: θ close to 0

Suppose $0<\theta<u^{-1 / 2}$.

$$
\left|\int_{0}^{1} Z_{t} d t\right| \leqslant\left|\int_{0}^{T} Z_{t} d t\right|+\left|\int_{T}^{1} Z_{t} d t\right|
$$

where T is chosen such that $Z_{T}=Z_{0}=1$ and the interval $(0, T)$ contains all 'full rotations'.

Sketch proof - case 1: θ close to 0

Suppose $0<\theta<u^{-1 / 2}$.

$$
\left|\int_{0}^{1} Z_{t} d t\right| \leqslant\left|\int_{0}^{T} Z_{t} d t\right|+\left|\int_{T}^{1} Z_{t} d t\right|
$$

where T is chosen such that $Z_{T}=Z_{0}=1$ and the interval $(0, T)$ contains all 'full rotations'. Similar to Lebesgue case:

$$
\left|\int_{T}^{1} Z_{t} d t\right| \lesssim u^{-1 / 2}
$$

so it remains to consider the 'full rotations'.

Sketch proof - case 1: θ close to 0

Recall that $Z_{t}=\exp \left(i X_{t}\right)$ where

$$
X_{t}=(-2 \pi u \cos \theta) t+(-2 \pi u \sin \theta) B(t)
$$

Sketch proof - case 1: θ close to 0

Recall that $Z_{t}=\exp \left(i X_{t}\right)$ where

$$
X_{t}=(-2 \pi u \cos \theta) t+(-2 \pi u \sin \theta) B(t)
$$

which means X_{t} satisfies a stochastic differential equation of the form

$$
d X_{t}=b d t+\sigma d B_{t}
$$

Sketch proof - case 1: θ close to 0

Recall that $Z_{t}=\exp \left(i X_{t}\right)$ where

$$
X_{t}=(-2 \pi u \cos \theta) t+(-2 \pi u \sin \theta) B(t)
$$

which means X_{t} satisfies a stochastic differential equation of the form

$$
d X_{t}=b d t+\sigma d B_{t} .
$$

Such equations are known as Itô drift-diffusion process,

Sketch proof - case 1: θ close to 0

Recall that $Z_{t}=\exp \left(i X_{t}\right)$ where

$$
X_{t}=(-2 \pi u \cos \theta) t+(-2 \pi u \sin \theta) B(t)
$$

which means X_{t} satisfies a stochastic differential equation of the form

$$
d X_{t}=b d t+\sigma d B_{t}
$$

Such equations are known as Itô drift-diffusion process, and we can appeal to Itô's lemma:

$$
f\left(X_{T}\right)-f\left(X_{0}\right)=\int_{0}^{T} b f^{\prime}\left(X_{t}\right)+\frac{\sigma^{2}}{2} f^{\prime \prime}\left(X_{t}\right) d t+\int_{0}^{T} \sigma f^{\prime}\left(X_{t}\right) d B_{t}
$$

Sketch proof - case 1: θ close to 0

Recall that $Z_{t}=\exp \left(i X_{t}\right)$ where

$$
X_{t}=(-2 \pi u \cos \theta) t+(-2 \pi u \sin \theta) B(t)
$$

which means X_{t} satisfies a stochastic differential equation of the form

$$
d X_{t}=b d t+\sigma d B_{t}
$$

Such equations are known as Itô drift-diffusion process, and we can appeal to Itô's lemma:

$$
\begin{aligned}
f\left(X_{T}\right)-f\left(X_{0}\right) & =\int_{0}^{T} b f^{\prime}\left(X_{t}\right)+\frac{\sigma^{2}}{2} f^{\prime \prime}\left(X_{t}\right) d t+\int_{0}^{T} \sigma f^{\prime}\left(X_{t}\right) d B_{t} \\
0 & =\int_{0}^{T} b i Z_{t}-\frac{\sigma^{2}}{2} Z_{t} d t+\int_{0}^{T} \sigma i Z_{t} d B_{t}
\end{aligned}
$$

Sketch proof - case 1: θ close to 0

Recall that $Z_{t}=\exp \left(i X_{t}\right)$ where

$$
X_{t}=(-2 \pi u \cos \theta) t+(-2 \pi u \sin \theta) B(t)
$$

which means X_{t} satisfies a stochastic differential equation of the form

$$
d X_{t}=b d t+\sigma d B_{t}
$$

Such equations are known as Itô drift-diffusion process, and we can appeal to Itô's lemma:

$$
\begin{aligned}
f\left(X_{T}\right)-f\left(X_{0}\right)= & \int_{0}^{T} b f^{\prime}\left(X_{t}\right)+\frac{\sigma^{2}}{2} f^{\prime \prime}\left(X_{t}\right) d t+\int_{0}^{T} \sigma f^{\prime}\left(X_{t}\right) d B_{t} \\
0= & \int_{0}^{T} b i Z_{t}-\frac{\sigma^{2}}{2} Z_{t} d t+\int_{0}^{T} \sigma i Z_{t} d B_{t} \\
& \int_{0}^{T} Z_{t} d t=\frac{\sigma i}{\sigma^{2} / 2-b i} \int_{0}^{T} Z_{t} d B_{t}
\end{aligned}
$$

Sketch proof - case 1: θ close to 0

- there is a wealth of literature concerning integrating against Brownian motion

Sketch proof - case 1: θ close to 0

- there is a wealth of literature concerning integrating against Brownian motion
- Consider the $2 p$ th moments:

$$
\mathbb{E}\left|\int_{0}^{T} Z_{t} d t\right|^{2 p}=\left|\frac{\sigma i}{\sigma^{2} / 2-b i}\right|^{2 p} \mathbb{E}\left|\int_{0}^{T} Z_{t} d B_{t}\right|^{2 p}
$$

Sketch proof - case 1: θ close to 0

- there is a wealth of literature concerning integrating against Brownian motion
- Consider the $2 p$ th moments:

$$
\mathbb{E}\left|\int_{0}^{T} Z_{t} d t\right|^{2 p}=\left|\frac{\sigma i}{\sigma^{2} / 2-b i}\right|^{2 p} \mathbb{E}\left|\int_{0}^{T} Z_{t} d B_{t}\right|^{2 p}
$$

- apply the Burkholder-Davis-Gundy inequality and Euler's formula to obtain good estimates

Sketch proof - case 1: θ close to 0

- there is a wealth of literature concerning integrating against Brownian motion
- Consider the $2 p$ th moments:

$$
\mathbb{E}\left|\int_{0}^{T} Z_{t} d t\right|^{2 p}=\left|\frac{\sigma i}{\sigma^{2} / 2-b i}\right|^{2 p} \mathbb{E}\left|\int_{0}^{T} Z_{t} d B_{t}\right|^{2 p}
$$

- apply the Burkholder-Davis-Gundy inequality and Euler's formula to obtain good estimates
- use Kahane's techniques to transform moment estimates back to an almost sure estimate for the Fourier transform

Sketch proof - case 2: θ far away from 0

Suppose $u^{-1 / 2}<\theta<\pi / 2$.

Sketch proof - case 2: θ far away from 0

Suppose $u^{-1 / 2}<\theta<\pi / 2$.

$$
\hat{\mu}(x)=\int_{0}^{1} \exp (-2 \pi i u(t \cos \theta+B(t) \sin \theta)) d t
$$

Sketch proof - case 2: θ far away from 0

Suppose $u^{-1 / 2}<\theta<\pi / 2$.

$$
\hat{\mu}(x)=\int_{0}^{1} \exp (-2 \pi i u(t \cos \theta+B(t) \sin \theta)) d t
$$

Since θ is 'big' one doesn't lose too much by throwing away the $t \cos \theta$ term:

$$
\int_{0}^{1} \exp (-2 \pi i u B(t) \sin \theta) d t .
$$

Sketch proof - case 2: θ far away from 0

Suppose $u^{-1 / 2}<\theta<\pi / 2$.

$$
\hat{\mu}(x)=\int_{0}^{1} \exp (-2 \pi i u(t \cos \theta+B(t) \sin \theta)) d t
$$

Since θ is 'big' one doesn't lose too much by throwing away the $t \cos \theta$ term:

$$
\int_{0}^{1} \exp (-2 \pi i u B(t) \sin \theta) d t .
$$

but this looks like the Fourier transform of the push forward of Lebesgue measure under Brownian motion $\nu=\mathcal{L}^{1} \circ B^{-1}$,

Sketch proof - case 2: θ far away from 0

Suppose $u^{-1 / 2}<\theta<\pi / 2$.

$$
\hat{\mu}(x)=\int_{0}^{1} \exp (-2 \pi i u(t \cos \theta+B(t) \sin \theta)) d t
$$

Since θ is 'big' one doesn't lose too much by throwing away the $t \cos \theta$ term:

$$
\int_{0}^{1} \exp (-2 \pi i u B(t) \sin \theta) d t .
$$

but this looks like the Fourier transform of the push forward of Lebesgue measure under Brownian motion $\nu=\mathcal{L}^{1} \circ B^{-1}$, so we can apply Kahane's estimates for such measures on Brownian images!

Sketch proof - case 2: θ far away from 0

Suppose $u^{-1 / 2}<\theta<\pi / 2$.

$$
\hat{\mu}(x)=\int_{0}^{1} \exp (-2 \pi i u(t \cos \theta+B(t) \sin \theta)) d t
$$

Since θ is 'big' one doesn't lose too much by throwing away the $t \cos \theta$ term:

$$
\int_{0}^{1} \exp (-2 \pi i u B(t) \sin \theta) d t .
$$

but this looks like the Fourier transform of the push forward of Lebesgue measure under Brownian motion $\nu=\mathcal{L}^{1} \circ B^{-1}$, so we can apply Kahane's estimates for such measures on Brownian images!

$$
|\hat{\nu}(x)| \stackrel{\text { a.s. }}{\vdots}|x|^{-1} \sqrt{\log |x|} \quad \text { (Kahane) }
$$

Sketch proof - case 2: θ far away from 0

Suppose $u^{-1 / 2}<\theta<\pi / 2$.

$$
\hat{\mu}(x)=\int_{0}^{1} \exp (-2 \pi i u(t \cos \theta+B(t) \sin \theta)) d t
$$

Since θ is 'big' one doesn't lose too much by throwing away the $t \cos \theta$ term:

$$
\int_{0}^{1} \exp (-2 \pi i u B(t) \sin \theta) d t .
$$

but this looks like the Fourier transform of the push forward of Lebesgue measure under Brownian motion $\nu=\mathcal{L}^{1} \circ B^{-1}$, so we can apply Kahane's estimates for such measures on Brownian images!

$$
|\hat{\nu}(x)| \stackrel{\text { a.s. }}{\vdots}|x|^{-1} \sqrt{\log |x|} \quad \text { (Kahane) }
$$

but we only get:

$$
|\hat{\mu}(x)| \stackrel{\text { a.s. }}{\lesssim}(u \sin \theta)^{-1} \sqrt{\log u}
$$

Sketch proof - case 2: θ far away from 0

Suppose $u^{-1 / 2}<\theta<\pi / 2$.

$$
\hat{\mu}(x)=\int_{0}^{1} \exp (-2 \pi i u(t \cos \theta+B(t) \sin \theta)) d t
$$

Since θ is 'big' one doesn't lose too much by throwing away the $t \cos \theta$ term:

$$
\int_{0}^{1} \exp (-2 \pi i u B(t) \sin \theta) d t .
$$

but this looks like the Fourier transform of the push forward of Lebesgue measure under Brownian motion $\nu=\mathcal{L}^{1} \circ B^{-1}$, so we can apply Kahane's estimates for such measures on Brownian images!

$$
|\hat{\nu}(x)| \stackrel{\text { a.s. }}{\vdots}|x|^{-1} \sqrt{\log |x|} \quad \text { (Kahane) }
$$

but we only get:

$$
|\hat{\mu}(x)| \stackrel{\text { a.s. }}{\lesssim}(u \sin \theta)^{-1} \sqrt{\log u} \lesssim u^{-1 / 2} \sqrt{\log u}
$$

Thanks!!

