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Fourier transforms and dimension

The Fourier transform of a measure µ on Rd is a function µ̂ : Rd → C defined
by

µ̂(x) =

∫
exp (−2πi x · y) dµ(y).
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Fourier transforms and dimension

The Fourier transform gives much geometric information about the measure.

dimH K = sup {s > 0 : ∃µ on K such that Is(µ) <∞}

where

Is(µ) =

∫∫
dµ(x)dµ(y)

|x − y |s

or (using Parseval and convolution formulae)

Is(µ) = C (s, d)

∫
Rd

|µ̂(x)|2|x |s−ddx (0 < s < d)

. . . and so if µ is supported on K , then

|µ̂(x)| . |x |−s/2 ⇒ Is−(µ) <∞ ⇒ dimH K > s
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Simple example

For example, if µ is Lebesgue measure on the unit interval, then a quick
calculation reveals that for x ∈ R

|µ̂(x)| =

∣∣∣∣∫ 1

0

exp (−2πixy) dy

∣∣∣∣ 6
1

π
|x |−1.
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Examples with no decay

The middle 3rd Cantor set also supports no measures with Fourier decay!
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Examples with no decay
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Fourier dimension

How much dimension can be realised by Fourier decay?

dimF K = sup
{
s > 0 : ∃µ on K such that |µ̂(x)| . |x |−s/2

}
dimF K 6 dimH K

Sets with equality are called Salem sets.
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Classical results on Brownian motion

The image of a Cantor set K ⊆ R under Brownian motion is a random fractal:

B(K ) = {B(x) : x ∈ K}.

• McKean proved in 1955 that ‘Brownian motion doubles dimension’, i.e.

dimH B(K )
a.s.
= min{2 dimH K , 1}.

• Kahane proved in 1966 that such image sets are almost surely Salem.

Jonathan M. Fraser Fourier transforms



Classical results on Brownian motion

The image of a Cantor set K ⊆ R under Brownian motion is a random fractal:

B(K ) = {B(x) : x ∈ K}.

• McKean proved in 1955 that ‘Brownian motion doubles dimension’, i.e.

dimH B(K )
a.s.
= min{2 dimH K , 1}.

• Kahane proved in 1966 that such image sets are almost surely Salem.

Jonathan M. Fraser Fourier transforms



Classical results on Brownian motion

The image of a Cantor set K ⊆ R under Brownian motion is a random fractal:

B(K ) = {B(x) : x ∈ K}.

• McKean proved in 1955 that ‘Brownian motion doubles dimension’, i.e.

dimH B(K )
a.s.
= min{2 dimH K , 1}.

• Kahane proved in 1966 that such image sets are almost surely Salem.

Jonathan M. Fraser Fourier transforms



Classical results on Brownian motion

The image of a Cantor set K ⊆ R under Brownian motion is a random fractal:

B(K ) = {B(x) : x ∈ K}.

• McKean proved in 1955 that ‘Brownian motion doubles dimension’, i.e.

dimH B(K )
a.s.
= min{2 dimH K , 1}.

• Kahane proved in 1966 that such image sets are almost surely Salem.

Jonathan M. Fraser Fourier transforms



Classical results on Brownian motion

The level sets of Brownian motion are random fractals:

Ly (B) = B−1(y) = {x ∈ R : B(x) = y}.

• Taylor/Perkins proved in 1955/1981 that

dimH Ly (B)
a.s.∗
= 1/2.

• Kahane proved in 1983 that such level sets are almost surely∗ Salem.
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Classical results on Brownian motion

The graph of Brownian motion is a random fractal:

G (B) = {(x ,B(x)) : x ∈ R}.

• Taylor proved in 1953 that

dimH G (B)
a.s.
= 3/2.

• It remained open for a long time whether or not graphs are almost surely Salem.

• Kahane explicitly asked the question in 1993 (also asked by Shieh-Xiao in 2006).
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Our work on Brownian motion

Theorem (F-Orponen-Sahlsten, IMRN ‘14)

The graph of Brownian motion is almost surely not a Salem set.

In fact, there
does not exist a measure µ supported on a graph which satsfies:

|µ̂(x)| . |x |−s/2

for any s > 1. Therefore dimF G (B) 6 1 < 3/2
a.s.
= dimH G (B).

• Key idea: we proved a new slicing theorem for planar sets supporting
measures with fast Fourier decay.

• the answer to Kahane’s problem is geometric (not stochastic).
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Slicing theorems

Theorem (Marstrand)

Suppose K ⊂ R2 has dimH K > 1, then for almost all directions θ ∈ S1, Lebesgue
positively many y ∈ R satisfy:

dimH K ∩ Lθ,y > 0.

Theorem (F-Orponen-Sahlsten, IMRN ‘14)

Suppose K ⊂ R2 has dimF K > 1, then for all directions θ ∈ S1, Lebesgue
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Our work on Brownian motion

• Brownian graphs are not Salem, but what is their Fourier dimension?

Theorem (F-Sahlsten, 2015)

Let µ be the push forward of Lebesgue measure on the graph of Brownian
motion. Then almost surely

|µ̂(x)| . |x |−1/2
√

log|x | (x ∈ R2)

and, in particular, dimF G (B)
a.s.
= 1.

This time our proof was stochastic (not geometric) and relied on techniques from
Itô calculus, as well as adapting some of Kahane’s ideas.
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Sketch proof

Write x ∈ R2 in polar coordinates as

x = (u cos θ, u sin θ)

and observe that

µ̂(x) =

∫ 1

0

Zt︷ ︸︸ ︷
exp (−2πiu(t cos θ + B(t) sin θ))dt.

We must prove

|µ̂(x)|
a.s.
6 Cu−1/2

√
log u

with C independent of θ.
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Sketch proof - case 1: θ close to 0

Suppose 0 < θ < u−1/2.

∣∣∣∣∫ 1

0

Ztdt

∣∣∣∣ 6

∣∣∣∣∣
∫ T

0

Ztdt

∣∣∣∣∣ +

∣∣∣∣∫ 1

T

Ztdt

∣∣∣∣
where T is chosen such that ZT = Z0 = 1 and the interval (0,T ) contains all
‘full rotations’. Similar to Lebesgue case:∣∣∣∣∫ 1

T

Ztdt

∣∣∣∣ . u−1/2

so it remains to consider the ‘full rotations’.
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Sketch proof - case 1: θ close to 0

Recall that Zt = exp(iXt) where

Xt = (−2πu cos θ)t + (−2πu sin θ)B(t)

which means Xt satisfies a stochastic differential equation of the form

dXt = bdt + σdBt .

Such equations are known as Itô drift-diffusion process, and we can appeal to
Itô’s lemma:

f (XT )− f (X0) =

∫ T

0

bf ′(Xt) +
σ2

2
f ′′(Xt)dt +

∫ T

0

σf ′(Xt)dBt

0 =

∫ T

0

biZt −
σ2

2
Ztdt +

∫ T

0

σiZtdBt

∫ T

0

Ztdt =
σi

σ2/2− bi

∫ T

0

ZtdBt
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Itô’s lemma:

f (XT )− f (X0) =

∫ T

0

bf ′(Xt) +
σ2

2
f ′′(Xt)dt +

∫ T

0

σf ′(Xt)dBt

0 =

∫ T

0

biZt −
σ2

2
Ztdt +

∫ T

0

σiZtdBt

∫ T

0

Ztdt =
σi

σ2/2− bi

∫ T

0

ZtdBt

Jonathan M. Fraser Fourier transforms



Sketch proof - case 1: θ close to 0

• there is a wealth of literature concerning integrating against Brownian motion

• Consider the 2pth moments:

E

∣∣∣∣∣
∫ T

0

Ztdt

∣∣∣∣∣
2p

=

∣∣∣∣ σi

σ2/2− bi

∣∣∣∣2p E
∣∣∣∣∣
∫ T

0

ZtdBt

∣∣∣∣∣
2p

• apply the Burkholder-Davis-Gundy inequality and Euler’s formula to obtain
good estimates

• use Kahane’s techniques to transform moment estimates back to an almost sure
estimate for the Fourier transform
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Sketch proof - case 2: θ far away from 0

Suppose u−1/2 < θ < π/2.

µ̂(x) =

∫ 1

0

exp (−2πiu(t cos θ + B(t) sin θ)) dt.

Since θ is ‘big’ one doesn’t lose too much by throwing away the t cos θ term:∫ 1

0

exp (−2πiuB(t) sin θ) dt.

but this looks like the Fourier transform of the push forward of Lebesgue measure
under Brownian motion ν = L1 ◦ B−1, so we can apply Kahane’s estimates for
such measures on Brownian images!

|ν̂(x)|
a.s.

. |x |−1
√

log |x | (Kahane)

but we only get:

|µ̂(x)|
a.s.

. (u sin θ)−1
√

log u . u−1/2
√

log u
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